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Abstract

In this study, it is shown that a computational procedure, termed “discrete damage space homogenization method”
(DDSHM), can accurately predict the constitutive response of layered composite materials containing growing cracks.
The effective constitutive law for a specific layered composite architecture, as defined by the DDSHM, was integrated
into the ABAQUS commercial finite element program using the user-defined material feature. Calculations were per-
formed to show correlation with experimental data on flat laminates and curved beam elements and to illustrate the
computational efficiency of the method for general analysis of composite materials with growing cracks. Results show
that given the basic information about the fracture toughness of the material, the DDSHM is able to predict important
material parameters, including the load at initiation of cracking, damage growth rate, and the resulting effect on the
macroscopic stiffness. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Experience has shown that it can be very useful to have analysis methods to assess how details of the
constituents and microstructure affect the resulting composite material behavior. The reason for this is
that there are far too many material parameters from which one may choose to engineer a better material
by experiment alone. Several of the mentioned analysis methods have been formulated, and all of them can
be said to form the so-called homogenization theory. The latter provides the formal framework for the
engineering analysis of effective properties of a composite material, i.e., the properties that a homoge-
neous material would have if it were to behave (in an average sense) like the material with discrete mi-
crostructure.
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In early examples of homogenization theories, such as the so-called classical approximation for the
analysis of an elastic composite body, the classical field equations of elasticity are assumed to be valid for a
composite material body with effective properties replacing the heterogeneous properties. This concept can
be extended to the study of conduction, swelling, viscoelasticity and diffusion (cf. Hashin, 1983). In
principle and with some modification, these concepts can be also be extended to include composite ma-
terials with growing damage. Specific models for predicting the effective properties of composite materi-
als with stationary or evolving damage can be characterized as (i) phenomenological or (ii) physically
based.

In phenomenological modeling approaches, the effects of microdamage are generally included in the
constitutive relations via a tensor valued average representation of the extent of microdamage. The overall
effect of the damage is then accounted for by postulating how the thermodynamic potentials of the material
depend on the chosen damage variable. These approaches have shown good correlation with experimental
data (cf. Allen et al., 1994). However, since only the average response is obtained from both the model and
experimental tests, and since many different microfields can yield identical averages, the correlation of
results does not necessarily imply that the model is providing accurate predictions of how the micro-
structure (damage) has evolved. Furthermore, while it may (or may not) be possible to characterize the
constitutive relation in an average sense using a continuum damage mechanics (CDM) model, this phe-
nomenological approach rarely provides sufficient detail on what caused the damage state to evolve in any
given way.

Knowledge of which microstructural detail is the “weak link” in a material can be very valuable because
it may allow one to engineer a better composite. This justifies efforts trying to derive effective constitutive
equations of composites alternative to phenomenological approaches. The basic idea is to be able to derive
effective constitutive equations which are not based on an average representation of damage, but rather are
based on fracture mechanics. In this case, for example, one would need to evaluate the Griffith type '
fracture criterion in a physically based model for the effective response functions of elastic composite
materials using techniques such as the J-integral (cf. Rice, 1968) or the virtual crack closure technique
(VCCT) (cf. Rybicki and Kanninen, 1977). Regardless of how the local fracture criterion is evaluated, to
practically apply this approach one must use a global-local (GL) analysis. The latter consists in conducting
a structural analysis of a composite component, say using the finite element method (FEM), and calcu-
lating the constitutive response at every integration point by a second analysis whose purpose is to de-
termine the evolution of the microstructure. The term GL simply reflects the nature of this approach which
is essentially a two-phase process where one set of calculations are embedded into another set of calcu-
lations.

Previous publications by the authors (Costanzo et al., 1996; Caiazzo and Costanzo, 2000a,b) outlined
and discussed the implementation of a theory for deriving the constitutive and evolution equations for
composite materials with growing cracks. This physically based analysis method has been termed a discrete
damage space homogenization method (DDSHM) 2 for reasons to be discussed in subsequent sections. It
was offered that this procedure is a computationally efficient alternative to the GL approach for modeling
the effective behavior of composite materials with growing cracks. The purpose of this paper is to present a
comparison between results obtained by the DDSHM and results obtained with other methods as well as
experimental studies. The paper also intends to illustrate the overall computational efficiency of the
DDSHM.

! The well-known Griffith (1921) criterion is an energy balance which states that crack extension is possible only when the energy
supplied to the system by loads is greater than the energy required to create new crack surfaces.

2 A detailed description of the DDSHM is rather lengthy and therefore is not given in this paper. For such a description, see Caiazzo
and Costanzo (2000a).
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2. A review of the discrete damage space homogenization method

The DDSHM is a method for the practical implementation of the formal homogenization theory pre-
sented by Costanzo et al. (1996). This theory concerns the determination of the effective constitutive
equations of composites with evolving microstructure in the forms of plasticity and microcracks. For the
sake of conciseness, this section only contains a review of the DDSHM formulation and the theory behind
it. Details on the formulation of the DDSHM method can be found in the work of Caiazzo and Costanzo
(2000a,b). However, before proceeding any further, it is important to note that the present discussion is
limited to the type of composites which will be discussed in the following examples, that is, linear elastic
composites with growing microcracks.

Formally, the theory of Costanzo et al. (1996) delivers effective constitutive equations conforming to the
thermodynamic theory of irreversible processes (Halphen and Nguyen, 1975; Germain et al., 1983; Maugin,
1992). In particular, the effective behavior of the composite is governed by two scalar functions: a ther-
modynamic and a dissipation potential. The thermodynamic potential, namely the Helmholtz free energy °,
is denoted by H and is a function of the selected macroscopic state variables:

H(t) = H(E;(t); 4 (t), ..., An (1)), (1)

where Ej;(¢) is the small strain tensor and 4,(¢), ..., Ay(?) are N internal state variables (ISVs), and ¢ is time.

The actual constitutive equations are then derived by simply differentiating H with respect to the state

variables (Germain et al., 1983), that is,

OH OH
G _
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where 2;; is the macroscopic stress tensor and G; is the thermodynamic force promoting the growth of the
ith ISV. The dissipation potential is denoted by Q and is a function of the generalized thermodynamic
forces G; (Edelen, 1974; Halphen and Nguyen, 1975; Germain et al., 1983):

Q=Q(G), i=1,...,N. 3)
Again, the actual evolution equations of the material are obtained by differentiating Q with respect to the
generalized forces G, i.e.,
. 0Q
}vl‘ - . 4

0G; (4)

In a two-dimensional (2D) context, the ISVs can be chosen to represent the length of the N cracks
present in the selected representative volume element (RVE). In this case, G; represents the energy release
rate for the ith crack and, using the principles of linear elastic fracture mechanics, a dissipation potential of
the following form can be used (Maugin, 1992):

Q=m(G~G), i=1,..N, ®)

where #; and G§* measure the materials resistance to crack growth, and where () denotes the positive part
operator defined by

@={ oS ser ©)

3 The Helmholtz (Gibbs) free energy is used in the case of a strain (stress) formulation.
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Fig. 1. A representative volume element for layered composites with growing cracks.

In order to practically use the theory outlined above, H must be evaluated for all possible values of the
state variables, i.e., for an infinite number of thermodynamic states. In general, this task is impossible to
accomplish in an exact way. It is for this reason that an approximate implementation method is required.
The DDSHM is a procedure which evaluates H at a discrete number of values of the ISVs, and all other
possible cases are obtained by interpolating between the computed values.

With reference to Fig. 1, the first step in the DDSHM is to solve a series of linear elastic boundary value
problems (BVP) to determine the material effective elastic moduli corresponding to a finite number of ISV’s
values. In this case, one can show that the first term of Eq. (2) yields

50 (8) = Aps(As(0), - - i (D)En(t), i=1,...,N. (7)

The fourth order tensor A,,,, which relates average strains E,, to the average stresses 2,,, can be de-
termined using a standard direct homogenization technique (Hashin, 1972) for fixed values of 1;. However,
it is important to note that even if the composite has elastic constituents, the effective moduli 4,,,, may be
time dependent due to the possible presence of growing cracks. Therefore, the time dependence in 2, arises
from two sources: the (time dependent) strain history and the implicit dependence of the effective moduli on
time evolving cracks.

For a fixed crack configuration, the solution to the BVP needed to define A4, exists and is unique
(Suquet, 1987). The case of an RVE with growing cracks changes the nature of the problem significantly.
The problem becomes an initial-boundary value problem (IBVP) whose nature strongly depends on the
evolution equations that govern the crack growth. For elastic constituents, these IBVPs have been shown to
have a formal structure essentially identical to that of the quasi-static evolution of plastic flow in an elastic,
perfectly plastic medium (Nguyen, 1984, 1985, 1986, 1987; Nguyen et al., 1990). The consequence is that
IBVPs where a system of Griffith cracks grows quasi-statically in an elastic medium do not, in general, yield
unique solutions. To define a quasi-static IBVP characterized by the existence and uniqueness of stable
solutions, a more regular crack growth law must be defined by including time dependence (i.e., a viscous type
behavior) in the crack growth law (Maugin, 1992). This can be accomplished by using a dissipation po-
tential such as that in Eq. (3), which yields a crack evolution law of the following type (cf. Coussy, 1986;
Schapery, 1975a,b.c):

4= (G, = G, ®)

where i =1,...,N, and the basic material properties n, and G will be referred to as the crack growth
viscosity coefficient and the critical energy release rate for the ith crack, respectively. It should be noticed
that, for n, — oo, Eq. (8) recovers the Griffith criterion (Griffith, 1921).

The key to the computational efficiency of the DDSHM is the manner in which the available energy
release rate G; in Eq. (8) is practically computed. With reference to Eq. (1) and the second term of Eq. (2),
for a composite with elastic constituents, and in view of the so-called average virtual work theorems (cf.
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Hashin, 1972; Suquet, 1985, 1987), H can be re-written in terms of the effective moduli and macroscopic
strain as

H (1) = 3Aua (71(2), 22(0), - . ., An (£))Eyj (1) Epa(2) )

for a given fixed crack configuration, viz., the values of /; at time ¢. The energy release rate definition in the
second term of Eq. (2) implies that the strain energy stored in the RVE must be known as a C! function of
crack length. As mentioned earlier, this is accomplished by determining the moduli 4,;, only for a finite
number of fixed crack length configurations. The smooth representation needed for H is then obtained via a
standard interpolation strategy (e.g. Lagrange polynomials of Press et al. (1994)).

The DDSHM constitutive and evolution equations (CEE) given by Eqgs. (7) and (8) form a system of
ordinary differential equations (ODEs) that describe the RVE microstructure evolution in terms of the
macroscopic applied average strain history. Thus, the value of the ISVs at any point in a loading program
can be determined through numerical solution of the set of ODEs indicated by Eq. (8) and not by re-
peatedly solving a micromechanics BVP for each load state. The DDSHM is general and subject only to
those limitations associated with using an RVE approach for the determination of effective material
properties. * Once the effective CEE have been defined, these may be used as the response functions for a
homogenized material point to solve structural mechanics problems of interest.

To construct the homogenized evolution equations by the DDSHM, the effective elastic moduli must be
evaluated at various stages of crack development. This implies that all possible crack paths within the
chosen RVE must be known a priori. ° This requirement is perhaps the main shortcoming of the DDSHM.
However, it should be noted that even if the RVE microstructure evolution is tracked using a GL approach,
some foreknowledge of the possible crack paths is still required to carry out the necessary calculations. For
this reason, the authors feel that the DDSHM represents a mathematically sound and practical alternative
to methods that require an explicit solution to a local micromechanics problem by FEM (or other nu-
merical methods) for each material point as the global load history evolves. In fact, even in the presence of
growing damage, the determination of the effective constitutive equations using the DDSHM is performed
only once and independently of the thermo-mechanical load path that will /ater be imposed during
structural analysis calculations.

In order to compare the DDSHM with traditional micromechanics based GL approach to damage
modeling, the computational steps involved in modeling the response of a general structure with a con-
stitutive law that includes crack evolution are shown in Fig. 2. Three basic steps are required regardless of
the constitutive modeling approach: (i) a pre-processing phase, where a model for the local material be-
havior is created; (ii) a solution phase, where the global structural behavior is determined using information
on the evolving material state from the constitutive law; and (iii) a post-processing phase, where material
state data is stored for review.

Items 1] through |2]in Fig. 2 highlight the differences between the DDSHM and the GL approach. Item
is a pre-processing step which is required by the DDSHM (cf. Eq. (7)) but not by the GL method. Note
that the fact that this extra step is performed in the pre-processing phase, i.c., decoupled from the global
solution of later structural analyses, is perhaps the most unique and desirable aspect of the DDSHM. The
parameter nDPT depends on the damage space discretization, i.e., combines the number of possible crack
paths as well as the number of points along each path at which the effective elastic moduli are explicitly
calculated. As described in earlier works (Caiazzo and Costanzo, 2000a), this step is currently accomplished
using a finite element program written especially for performing the DDSHM procedure.

4 Among other considerations, the dimensions dy, dy, and dz shown in Fig. 1 must be small relative to gradients in the macroscopic
variables E;; and X;.
5 This requirement justifies terming this approach a DDSHM since a finite, yet possibly large, set of damage states is considered.
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Fig. 2. A flow chart showing computational steps for a nonlinear structural analysis. Differences between the DDSHM (left) and a GL
approach (right) are highlighted. The steps shown in the center are common to both the procedures.

The major computational difference between the two methods occurs during the solution phase (items
and . Crack evolution in DDSHM is determined by numerically solving a set of N ODEs indicated by Eq.
(8). This is currently accomplished using a fourth order Runge-Kutta algorithm with adaptive step size
control (Press et al., 1994). In the GL method, crack evolution is determined by performing a complete
micromechanics analysis for each material point in the global analysis. Hence, if an identical RVE is se-
lected for both the DDSHM and a GL analyses, we offer that the numerical solution of N ODEs will
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require less computational effort than solving an mDOF set of linear equations, where mDOF represents the
number of degrees of freedom in the micromechanical solution of the RVE problem. In other words, for
practical problems such as the computational time associated with solving p x g x mDOF, it is to be ex-
pected that mDOF is so large that it will considerably outweigh the DDSHM requirement of having to
solve nDPT problems to generate the set of N ODEs which is then solved p x ¢ times in the global analysis.
It is also important to note that total solution zime depends not only on the number of computations
(related to N for DDSHM and mDOF for a GL approach) performed at the local level but also depends on
the stability of the local constitutive routine. Stability here refers to the ability of the local model to return
the expected updated stress vector and stiffness tensor for the material point to the global model such that
global equilibrium is obtained in the fewest iterations possible. An example of an unstable local model is
one where the stiffness and stress residual varies in a discontinuous manner for small values of state variable
evolution. Because the effective moduli in the DDSHM are based upon a Lagrange interpolation of values
at discrete points of crack evolution, smoothness is virtually guaranteed.

3. The effect of intraply cracks on macroscopic stiffness

Without question, the most widely researched damage propagation problem in composites is that of
intraply cracking. Intraply cracks, sometimes referred to as ply or matrix microcracks, are known to de-
velop in laminated composites subject to tensile and shear loads. Several researchers have studied the
development of these cracks and measured their effect on the macroscopic stiffness. It has been offered that
tracking the evolution, i.e., growth of individual intraply cracks is of no significance to understanding the
composite behavior (Hashin, 1996). Rather, in all previous works documented in the literature, develop-
ment or evolution is characterized by the appearance of a new crack surface. This can be argued intuitively
based on the fact that for most practical laminates and loading conditions, the stress transverse to the fiber
direction does not vary significantly with the through-the-thickness coordinate. In fact, in most of the
experimental studies, cross-ply laminates are loaded in uniform tension. Thus, the measure of damage
evolution is the crack density or number of cracks per length unit. Many researchers have used several
different techniques to study how intraply cracks affect the macroscopic stiffness of composite materials
(Highsmith and Reifsnider, 1982; Nairn, 1989; Hashin, 1987; Wang, 1984; Tay and Lim, 1993; Tay et al.,
1997; Allen and Harris, 1987a,b). In this section, results generated using the DDSHM are compared with
experimental results found in the technical literature.

As discussed earlier, the first step in the DDSHM is to generate the constitutive relation for the material
RVE as a function of the ISVs. The RVE used to study the effective constitutive behavior of cross-ply
laminates with intraply cracks is shown in Fig. 3. This RVE provides CEE data for several different crack
densities (a/h;) for correlation with experimental results depending upon the value of the ISVs 4,, i.e., which
of the three cracks have fully extended. Note that this 2D RVE provides only a subset of the full three-
dimensional (3D) response functions and implies that crack lengths are independent of the out-of-plane
coordinate. © This is a valid assumption for the loading types presented in the literature and to be studied
here. Furthermore, since the experimental data in the literature are limited to the measurement of crack
densities instead of lengths of individual microcracks, all results presented below were generated using a
crack growth law that approximates the Griffith criterion. This is accomplished by setting the values of the
parameters denoted by #; in Eq. (8) to be very large. The material properties used to generate the results
presented below are listed in Table 1. Said results are compared with experimental data taken from a paper

¢ A 2D RVE was chosen for computational simplicity. The DDSHM can be used to generate the response functions for a full 3D
case.
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Fig. 3. A DDSHM RVE for layered composites with three crack densities.

Table 1
Material properties used in for generating the results presented in Fig. 4*
Property Glass/epoxy Carbon/epoxy
E; (GPa) 41.7 144.8
Er (GPa) 13.0 9.6
Gir (GPa) 34 4.8
vir 0.30 0.31
vrr 0.42 0.46
Ply thickness (mm) 0.203 0.127
Matrix fracture toughness (J/m?) 400 800

#This data set is the same as that used by Lee et al. (1989).

by Lee et al. (1989) who summarized the analytical and experimental works of others for comparison with
their continuum damage mechanics model. The experimental data cited by Lee et al. (1989) are repeated
here to show that the DDSHM accurately models the stiffness reductions in glass and carbon fiber rein-
forced epoxy cross-ply laminates subjected to monotonically increasing tensile loads.

The DDSHM obtained results are summarized in Fig. 4. Note that correlation of the DDSHM with the
experimental data (also presented in Fig. 4) provides no validation of the ability of the model to predict
the onset of damage in the material. This correlation only shows that if the damage state is known, the
DDSHM correctly determines the corresponding effective stiffness. Let us recall from Section 2 that this is
only one aspect of the problem (e.g., Eq. (7)). A complete set of CEE requires that the model also predict
damage evolution (e.g., Eq. (8)). Nevertheless, the excellent agreement between the DDSHM results and the
experimental data does indicate that if a suitable crack growth law can be implemented, the DDSHM
procedure will provide a good model of the overall constitutive and evolution response of the material.
Onset and growth of damage are discussed in subsequent sections.

4. Loads to initiate damage under uniform tension

The results summarized in Fig. 4 show that the DDSHM can accurately predict the effective moduli of
layered composites containing cracks as functions of damage. In this section, data are presented to show
that the DDSHM is able to predict the macroscopic load state at which damage initiates given the basic
information about the fracture toughness of the material.

The stress—strain response predicted by the DDSHM model of two glass and carbon fiber reinforced
epoxy cross-ply laminates under monotonic tensile loading is shown in Fig. 5. These curves were obtained
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Fig. 4. Axial stiffness versus crack density for cross-ply laminates. The DDSHM predictions are shown by dashed lines. The filled
circles represent the experimental data taken from the work of Lee et al. (1989). The plots in the top and bottom left quadrants concern
glass/epoxy [0/905]¢ and [0/90]¢ cross-ply laminates, whereas plots in the top and bottom right quadrants concern results for carbon/
epoxy [0/90;]g and [0/90]g cross-ply laminates. The stiffness values have been normalized with respect to the undamaged stiffness.

using the RVE shown in Fig. 3 and the material properties in Table 1. The plots in Fig. 5 show that the
DDSHM is certainly capable of qualitatively predicting the trends that have been observed experimentally
by several researchers (cf. Daniel and Lee, 1990). These trends display an initial linear elastic response
followed by a region where the stiffness is degrading continuously with increasing applied load as damage
grows (i.e., new cracks form). Finally, there exists a region that is again linear and associated with the
saturated damage state, i.e., no additional cracks form as load is increased further.

To show that the DDSHM can also provide good quantitative information, a comparison will be now
presented between DDSHM predictions and experimental crack density results given by Nairn (1989) (and
attributed to Highsmith and Reifsnider (1982)) concerning glass fiber reinforced epoxy cross-ply laminates.
Specifically, Fig. 6 shows experimental data taken from the work of Nairn (1989) and two distinct DDSHM
predictions (again using the same properties and RVE referred to so far). With reference to Eq. (8) and Fig.
3, one set of DDSHM results were generated by choosing the values for the critical energy release rates
(ERR) to be the same for all cracks in the RVE. The said values were chosen to be equal to a typical, critical
ERR value of the matrix material, i.e., 300 J/m? (cf. Nairn, 1989). This choice of ERRs leads the DDSHM
generated constitutive and evolution equations to (a) overpredict the stress level required to develop low
values of crack density and (b) to underpredict the stress level required to produce higher damage densities.
This kind of result is to be expected. In fact, Hashin (1996) discusses the importance and consequences of
material variability on crack development in cross-ply laminates and outlines an approach to account for
these variabilities in a statistical sense. One very simple approach to simulating these effects is to assume
that the critical ERR of one of the cracks is lower than that of its neighbors. This idea was used to generate
the second set of the DDSHM results. Again with reference to Fig. 3, this second set of results was pro-
duced by arbitrarily setting G; = 150 J/m? while keeping the other critical ERR values equal to 300 J/m?.
The damage onset stress level corresponding to this choice of ERRs is lower, as expected. One could argue
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that this lower ERR is a weak link in the material due to statistically varying strength properties. Once a
crack develops at the weak location, residual and/or thermal stresses are relieved and no additional cracks
form until local energy available to create new crack surfaces equals the material fracture toughness. In
effect, this hypothesis of material behavior lowers the load required to develop low crack densities but does
not significantly effect the load required to saturate the material with cracks.
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The results shown so far indicate that the DDSHM results are generally in good agreement with the
experimental data for a [0/90;] glass/epoxy laminate. Note that these predictions were made using basic
information about the fracture toughness of the matrix material, which, for intraply crack growth, we
assumed to be equal to the measured mode I fracture toughness. Furthermore, we have shown that to
investigate the effects that G" has on macroscopic response (here, global stress at onset of crack growth) by
the DDSHM, we need not return to the RVE analysis: we need only repeat the solution of the ODEs
indicated by Eq. (8) to calculate the new crack evolution.

Figs. 7 and 8 show the results of similar computations and measurements for carbon fiber reinforced
cross-ply laminates. Again, the DDSHM results are generally in good agreement with the measured data
except, perhaps, for the case of the [0/90] laminates wherein limited experimental data exist. Furthermore,
the DDSHM predicts the physically reasonable and widely argued result that there exists a threshold region
of load where no cracks form followed immediately by a rapid increase in crack density under a moderate
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Fig. 8. Crack density as a function of applied tensile stress for several carbon/epoxy laminate as predicted by DDSHM. The DDSHM
prediction is shown by the dashed lines. With reference to Fig. 3, the critical ERR for all cracks was chosen to be 800 J/m?. The filled
symbols (squares for [0/904]g; circles for [0/90]s; and triangles for [0/90]) represent the experimental results discussed by Hashin
(1996).
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increase in load. The additional load required to introduce more cracks then increases steadily for cross-ply
laminates until a fiber dominated failure occurs.

5. Modeling of structural elements

A major goal of any effective continuum theory is increased computational efficiency to allow one to
model the effective response of material with discrete microstructure by the smallest set of unknowns that
accurately capture the material response. If the set is sufficiently small, the constitutive model can not only
be used to gain an understanding of how key microstructural parameters affect the overall material re-
sponse but also to model and track the onset and growth of damage in complex structures by integrating it
in a structural analysis package. In this section, results of finite element analyses (FEA) of several simple
structures are presented to show that the DDSHM provides a constitutive model that can easily be inte-
grated with the ABAQuUs FEA software package.

The first example presented herein considers a system that has been extensively studied by Martin (1992,
1991). Martin has developed, analyzed and tested curved beam configurations designed to investigate in-
terlaminar and intraply damage development in unidirectional and cross-ply carbon/epoxy composite
laminates. Unidirectional specimens were used to investigate interlaminar failures, while both intraply and
interlaminar failures are possible in the cross-ply laminates. The rationale for presenting a comparison
between the results by Martin and those obtained via FEA and DDSHM lies in the fact that previous works
(cf. Sun and Kelly, 1988) indicated that predicting the onset of interply damage is difficult when using
strength-based failure criteria due to the difficulty in measuring basic through-the-thickness strengths.
Furthermore, this problem is also complicated by the lack of a validated failure criterion for the multi-axial
stress state that occurs in the curved section of the beam specimen. Finally, the comparison is relevant to
the method proposed in this paper because the analytical results obtained by Martin employed a GL
scheme which relied on the application of the virtual crack closure technique for the prediction of damage
evolution as opposed to an evolution law embedded in the element constitutive routine for all elements of
an FEA.

Proceeding to the presentation of the results, the 2D 7 plane stress ABAQUS finite element model used to
calculate the global response of the curved beam specimens is shown in Fig. 9 along with the RVE used by
the DDSHM to obtain the system’s effective constitutive equations. This RVE contains both intraply and
interlaminar cracks. In this example, it was assumed that crack growth is symmetric within the RVE, i.c., a
delamination always grows above and below the central ([0] for the unidirectional specimens and [90] for
the cross-ply laminates) layer. Also, since only a single intraply crack is present within the RVE, the CEE
for the cross-ply laminates correspond to a single value of crack density, viz., a/h = 0.5.

In Table 2, the results obtained from the DDSHM/FEA regarding the delamination onset conditions are
summarized and compared with experimental and analysis data given by Martin. Additional information
concerning the delamination onset is shown in Fig. 10 for the three curved beam specimens analyzed. As
shown in Table 2, the location of greatest energy available to grow a delamination crack, viz. 43, is in
excellent agreement with the results obtained by Martin (1992, 1991) using a GL analysis technique. Note
that the DDSHM predictions were made by assigning a value of critical ERR (G¥) of 80 J/m? to the
constitutive property database for all elements in the model. This is the average value of G for the material
as reported by Martin.

7 In preparing this paper, a simplified 2D representation of the curved beam specimen was used instead of a 3D model. Clearly, a 3D
model would be needed to account for free-edge effects, and a more detailed analysis would be required to gain the level of
understanding of the material behavior needed to predict structural reliability.
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Fig. 9. The 2D aBAQUs FE model used to predict the global response of the curved beams.

Table 2
Onset of delamination results for the carbon/epoxy laminate curved beams analyzed by Martin (1991)*
Onset of delamination Laminate type
Result Source [0] [(0/90),]5 [(07/905) 15
p Martin’s analysis 0.42 N/A 0.42
Martin’s experiment 0.33-0.49 N/A N/A
DDSHM 0.41 0.41 0.41
0° Martin’s analysis 25 N/A 25
DDSHM 25.4 25.4 25.4
P(N) Martin’s experiment 7.23-14.60 N/A 6.50-10.50
DDSHM 9.13-9.74 7.99-8.49 8.88-9.48

#The beam geometry is shown in Fig. 9. N/A stands for not available. With reference to Fig. 9, P and 0 are defined in the figure,
whereas p = (R — R;)/w.

Unidirectional [(0/90)n]s [(07/905)N]s

T

Maximum G3 - Maximum G v Maximum G3
Hg = 25.4° E_X lo=2540 O =254°

Fig. 10. RVE and graphical display of spatial variation of Gs in the radius of the curved beam specimens.

The fact that the p and 0 values reported in Table 2 are the same for the three lay-up configurations
analyzed indicates that the point with maximum ERR is located in the same element of the underlying FE
grid. In other words, the maximum ERR points for the three material configurations analyzed are close to
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one another. This result may appear a little surprising. However, recall that the constitutive behavior
provided by the DDSHM and input into the FE analysis is that of an equivalent homogeneous material and
not a discrete layered one. In addition, one needs to observe that the macroscopic actions (shear force and
bending moment distributions) for the problem at hand are statically determined, i.e., independent of
material properties. Thus, the location of the maximum through-the-thickness stress (and in this case,
ERR) depends on the degree of local material anisotropy, which does not vary greatly for the materials at
hand.

Another observation concerning the results given in Table 2 considers the fact that a range of values is
reported for the critical load P instead of a single value. This is due to the fact that, for the DDSHM results,
the actual value of load at which the delamination initiates is difficult to determine using a nonlinear in-
cremental loading analysis. Rather, we are only able to establish during what load increment the interply
crack appeared and/or extended a finite amount. A better estimate (i.e., reduced range) of the actual value
of load to initiate crack growth could be obtained by reducing the maximum load increment size. However,
given the significant scatter in the experimental data, no additional analyses were conducted to refine the
DDSHM load predictions. Furthermore, it should be noted that the structure of the DDSHM constitutive
equations allows one to investigate the effects of critical ERR on material behavior without returning to the
RVE analysis. Thus, we could readily use the DDSHM CEE to determine the relative values of G§* required
to initiate each damage mode for a given global load level or history.

To substantiate the claim that the DDSHM approach is more computationally efficient and offers more
freedom than a GL method, we present a final set of analysis results. With reference to the inset in Fig. 11,
suppose a set of 44 ply thick (¢ = 5.6 mm) straight beams were manufactured from the [0/90]; material
used for the curved beams discussed above. Furthermore, suppose that said straight beams were to be tested
in three-point flexure at two different length-to-depth ratios. The CEE obtained by the DDSHM in con-
junction with the curved beam analyses can be directly applied to track damage development in the three-
point bending problem without returning to the micromechanics analysis level. To do so, we must only
construct a new global FEA model of each new beam configuration. Results from this exercise are sum-
marized in Figs. 11 and 12. Fig. 11 shows that results from the FE model using the CEE derived by the
DDSHM are in good agreement with the classical Euler—Bernoulli beam theory analytical prediction for
mid-span beam deflection. As expected, the overall load deflection results from the FE analysis of the short
beam deviates slightly from the analytical result that ignores transverse shearing deformation effects. Values
of the ISVs (i.e., intraply and interply crack lengths) in each element in the FE model at two load levels are
plotted in Figs. 12 and 13 to show how damage develops differently in each beam configuration. A value of
1.0, shown as the darkest shading in the figures, indicates that the crack is fully extended, while lighter
shades are associated with crack lengths less than fully extended. Unshaded regions are undamaged at the

1000 —
800 Tfj/ d=6 x
z i L
~— 600 ,[ t t +
-% I ---- Euler-Bernoulli
8400 4 — DDSHM/FEA
200 | ,QM
0 L/d =24
0.0 4.0 8.0 12.0

. Mid-Span Deflection (mm)

Fig. 11. Load-deflection response of three-point flexure specimen.
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Fig. 12. Graphical display of values of ISVs in three-point flexure specimen, L/d = 6. Top-intraply cracks, bottom-interply cracks. The
ISVs are defined in the RVE shown in Fig. 9.
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Load Increment 4 Load Increment 10

Fig. 13. Graphical display of values of ISVs in three-point flexure specimen, L/d = 24. Top-intraply cracks, bottom-interply cracks.
The ISVs are defined in the RVE shown in Fig. 9.

load levels indicated. These analyses yield the following expected results: (i) intraply damage occurs on the
tensile side of the beams, (ii) intraply damage is more widespread in the longer beam geometry, and (iii)
interply cracking in the shorter specimen occurs near the middle surface of the beam where the interlaminar
shear stress is the greatest. Note that the FE result that includes damage development is only slightly
nonlinear since intraply cracking (and local delamination) do not significantly effect the macroscopic
stiffness of the material.
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6. Closing remarks

Results presented here show that the DDSHM can deliver the effective damage dependent constitutive
and evolution equations of layered composite materials. The CEE derived by the DDSHM allow one to
obtain good agreement with experimental data and other analysis results available in the literature, and said
CEE represent the effective properties of the composite material with growing cracks in the strict sense of
the expression. The DDSHM is an alternative approach to GL analysis. By definition, the GL analysis
method requires that calculations be performed locally for each material point and load step in the analysis.
In other words, GL analyses do not deliver the effective constitutive relations for a material. Rather, they
provide the value of the current average stress (or strain) for the current value of average strain (or stress) at
the material point. In fact, GL analysis methods do not provide any information that can be used in any
other analysis than the particular problem at hand, e.g., there is no way to apply the virtual crack closure
results from a curved beam analysis to the three-point flexure test on the same material. Clearly, a more
desirable result would be one where the local (RVE) effective constitutive and damage evolution equations
for a given material could be obtained once and for all and separately from the global analysis. The
DDSHM precisely delivers this information. Furthermore, as shown here, the DDSHM CEE are derived in
a form that is easily integrated with a global structural analysis package and therefore can be applied to a
wide range of structures.
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